
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A Review Report on Approaches to Software
Metrics and Process Improvement

Preety Verma Dhaka, Dr. Amita Sharma

Abstract— Software metrics are useful in different phase of the Object-Oriented Software Development Life Cycle (SDLC). Metrics are
used by the software industry to itemize the development, operation and maintenance of software. Application of proper metrics reduces
mainternnace costs and efforts. The practice of applying software metrics to a software process and to a software product is a complex
task that requires study and restraint, which brings knowledge of the status of the process and / or product of software in regards to the
goals to achieve. In this paper, we have presented metrics for Object Oriented Software Systems. They provide a basis for measuring all
characteristics. This demand has spurred the provision of a number of new and/or improved approaches to software development, with
perhaps the most prominent being object-orientation (OO). In addition, the focus on process improvement has increased the demand for
software measures, or metrics with which to manage the process. The needs for such metrics are important while an organization is
adopting a new technology for which established practices have yet to be developed. This research addresses these needs through the
development and implementation of a suite of metrics for OO design.

Index Terms— Metrics, Object Oriented Design, Coupling, Cohesion, Complexity, Size, SDLC.

——————————  ——————————

1 INTRODUCTION
t is important to further define the term software metrics as
used in this module. Essentially, software metrics deals with
the measurement of the software product and the process

by which it is developed. In this discussion, the software
product should be viewed as an abstract object that evolves
from an initial statement of need to a finished software sys-
tem, including source and object code and the various forms
of documentation produced during development. Ordinarily,
these measurements of the software process and product are
studied and developed for use in modeling the software de-
velopment process [1]. These metrics are then used to estimate
or predict product costs and schedules and to measure
productivity and product quality. Information gained from the
metrics and the model can then be used in the management
and control of the development process, leading, to improved
results. Good metrics should facilitate the development of
models that are capable of predicting process or product pa-
rameters, not just describing them. Software metrics can be
classified into three categories: product metrics, process met-
rics, and project metrics (Victor Basili and Walcelio L Melo)
Object-Oriented Analysis and Design of software provide
many benefits such as reusability, decomposition of problem
into easily understood object and the aiding of future modifi-
cations. But the OOAD software development life cycle is not
easier than the typical procedural approach [2]. Therefore, it is
necessary to provide dependable guidelines that one may fol-
low to help ensure good OO programming practices and write
reliable code. Object-Oriented programming metrics is an as-

pect to be considered. Metrics is supposed to to be a set of
standards against which one can measure the effectiveness of
Object-Oriented Analysis techniques in the design of a system.
In Object Oriented software development process, the system
is viewed as collection of objects. The functionality of the ap-
plication is achieved by interaction among these objects in
terms of messages. Whenever, one object depends on another
object to do certain functionality, there is a relationship be-
tween those two classes

Following are the five characteristics of Object Oriented
Metrics.

 Localization - operations used in many classes
 Encapsulation - metrics for classes, not modules
 Information Hiding - should be measured & improved
 Inheritance - adds complexity, should be measured
 Object Abstraction - metrics represent level of abstrac-

tion

We can signify nine classes of Object Oriented Metrics. In

each of then an aspect of the software would be measured:
 Size

Population (# of classes, operations)
Volume (dynamic object count)
Length (e.g., depth of inheritance)
Functionality (# of user functions)

 Complexity
How classes are interrelated

 Coupling
of collaborations between classes, number of

method calls, etc.
 Sufficiency

Does a class reflect the necessary properties
of the problem domain?

 Completeness

I

————————————————
 Preety Verma Dhaka is pursuing her Ph.D (CS & IT) in J. V. W. Uni-

versity,Jaipur, India. E-mail: dhakavermapreety@hotmail.com
 Dr.Amita Sharma is currently associated as Assistant Professor with

I.I.S. University Jaipur, India. E-mail: amita214@rediffmail.com

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Does a class reflect all the properties of the
problem domain? (for reuse)

 Cohesion
Do the attributes and operations in a class

achieve a single, well-defined purpose in the problem
domain?

 Primitiveness (Simplicity)
Degree to which class operations can’t be

composed from other operations
 Similarity

Comparison of structure, function, behavior
of two or more classes

 Volatility
The likelihood that a change will occur in the

design or implementation of a class

2 CHIDAMBER & KEMERER'S METRICS SUITE
Chidamber and Kemerer's metrics suite for OO Design is the
deepest research in OO metrics nvestigation. They have de-
fined six metrics for the OO design. In this section we’ll have a
complete description of their metrics:

METRIC 1: WEIGHTED METHODS PER CLASS (WMC)
Definition: Consider a Class C1, with methods M1... Mn that
are defined in the class. Let c1... c n be the complexity of the
methods. Then:

If all method complexities are considered to be unity, then
WMC = n, the number of methods. Theoretical basis: WMC
relates directly to Bunge's1 definition of complexity of a thing,
since methods are properties of object classes and complexity
is determined by the cardinality of its set of properties. The
number of methods is, therefore, a measure of class definition
as well as being attributes of a class, since attributes corre-
spond to properties.

Description

 The number of methods and the complexity of meth-
ods involved is a predictor of how much time and ef-
fort is required to develop and maintain the class.

 The larger the number of methods in a class the great-
er the potential impact on children, since children will
inherit all the methods defined in the class.

 Classes with large numbers of methods are likely to
be more application specific, limiting the possibility of
reuse.

METRIC 2: DEPTH OF INHERITANCE TREE (DIT)
Definition: Depth of inheritance of the class is the DIT metric
for the class. In cases involving multiple inheritance, the DIT
will be the maximum length from the node to the root of the
tree. Theoretical basis: DIT relates to Bunge's notion of the

scope of properties. DIT is a measure of how many ancestor
classes can potentially affect this class.

Description:

 The deeper a class is in the hierarchy, the greater the
number of methods it is likely to inherit, making it
more complex to predict its behavior.

 Deeper trees constitute greater design complexity,
since more methods and classes are involved.

 The deeper a particular class is in the hierarchy, the
greater the potential reuse of inherited methods.

METRIC 3: NUMBER OF CHILDREN (NOC)
Definition: NOC = number of immediate sub-classes subordi-
nated to a class in the class hierarchy. Theoretical basis: NOC
relates to the notion of scope of properties. It is a measure of
how many subclasses are going to inherit the methods of the
parent class.

Description:

 Greater the number of children, greater the reuse,
since inheritance is a form of reuse.

 Greater the number of children, the greater the likeli-
hood of improper abstraction of the parent class. If a

 class has a large number of children, it may be a case
of misuse of sub-classing.

 The number of children gives an idea of the potential
influence a class has on the design. If a class has a

 large number of children, it may require more testing
of the methods in that class.

METRIC 4: COUPLING BETWEEN OBJECT CLASSES
(CBO)

Definition: CBO for a class is a count of the number of other
classes to which it is coupled. Theoretical basis: CBO relates to
the notion that an object is coupled to another object if one of
them acts on the other, i.e., methods of one use methods or
instance variables of another. As stated earlier, since objects of
the same class have the same properties, two classes are cou-
pled when methods declared in one class use methods or in-
stance variables defined by the other class.

Description:

 Excessive coupling between object classes is detri-
mental to modular design and prevents reuse. The
more independent a class is, the easier it is to reuse it
in another application.

 In order to improve modularity and promote encap-
sulation, inter-object class couples should be kept to a
minimum. The larger the number of couples, the
higher the sensitivity to changes in other parts of the
design, and therefore maintenance is more difficult.

 A measure of coupling is useful to determine how
complex the testings of various parts of a design are
likely to be. The higher the inter-object class coupling,

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

the more rigorous the testing needs to be.

METRIC 5: RESPONSE FOR A CLASS (RFC)
Definition: RFC = | RS | where RS is the response set for the
class. Theoretical basis: The response set for the class can be
expressed as:

RS = { M }È all i { Ri } where { Ri } = set of methods called by
method i and { M } = set of all methods in the class The re-
sponse set of a class is a set of methods that can potentially be
executed in response to a message received by an object of that
class26. The cardinality of this set is a measure of the attributes
of objects in the class. Since it specifically includes methods
called from outside the class, it is also a measure of the poten-
tial communication between the class and other classes.

Description:

 If a large number of methods can be invoked in re-
sponse to a message, the testing and debugging of the
class becomes more complicated since it requires a
greater level of understanding required on the part of
the tester.

 The larger the number of methods that can be in-
voked from a class, the greater the complexity of the
class.

 A worst case value for possible responses will assist
in appropriate allocation of testing time.

METRIC 6: LACK OF COHESION IN METHODS (LCOM)
Definition: Consider a Class C1 with n methods M1, M2...,
Mn. Let {Ij} = set of instance variables used by method Mi.
There are n such sets {I1},... {In}. Let P = { (Ii,Ij) | Ii Ij = }
and Q = { (Ii,Ij) | Ii Ij _ }. If all n sets {I1},... {In} are then
let P = .
LCOM = |P| - |Q|, if |P| > |Q| = 0 otherwise

Example: Consider a class C with three methods M1, M2 and
M3. Let {I1} = {a,b,c,d,e} and {I2} = {a,b,e} and {I3} = {x,y,z}. {I1}
{I2} is non-empty, but {I1} {I3} and {I2} {I3} are null sets.
LCOM is the (number of null-intersections - number of non-
empty intersections), which in this case is 1.
Theoretical basis: This uses the notion of degree of similarity
of methods. The degree of similarity for two methods M1 and
M2 in class C1 is given by:

() = {I1} {I2} where {I1} and {I2} are the sets of instance vari-
ables used by M1 and M2

The LCOM is a count of the number of method pairs whose
similarity is 0 (i.e. s() is a null set) minus the count of method
pairs whose similarity is not zero. The larger the number of
similar methods, the more cohesive the class, which is con-
sistent with traditional notions of cohesion that measure the
interrelatedness between portions of a program. If none of the
methods of a class display any instance behavior, i.e. do not

use any instance variables, they have no similarity and the
LCOM value for the class will be zero. The LCOM value pro-
vides a measure of the relative disparate nature of methods in
the class. A smaller number of disjoint pairs (elements of set P)
implies greater similarity of methods. LCOM is intimately tied
to the instance variables and methods of a class, and therefore
is a measure of the attributes of an object class.

Description:

 Cohesiveness of methods within a class is desirable,
since it promotes encapsulation.

 Lack of cohesion implies classes should probably be
split into two or more sub-classes.

 Any measure of disparateness of methods helps iden-
tify flaws in the design of classes.

 Low cohesion increases complexity, thereby increas-
ing the likelihood of errors during the development
process.

3 MOOD (METRICS FOR OBJECT ORIENTED DESIGN)
The MOOD metrics set refers to a basic structural mechanism
of the OO paradigm as encapsulation (MHF and AHF), inher-
itance (MIF and AIF), polymorphisms (PF) , message-
passing (CF) and are expressed as quotients. The set includes
the following metrics:

METHOD HIDING FACTOR (MHF)
MHF is defined as the ratio of the sum of the invisibilities of
all methods defined in all classes to the total number of meth-
ods defined in the system under consideration. The invisibility
of a method is the percentage of the total classes from which
this method is not visible. (note : inherited methods not con-
sidered.) [3].

ATTRIBUTE HIDING FACTOR (AHF)
AHF is defined as the ratio of the sum of the invisibilities of all
attributes defined in all classes to the total number of attrib-
utes defined in the system under consideration.

METHOD INHERITANCE FACTOR (MIF)
MIF is defined as the ratio of the sum of the inherited methods
in all classes of the system under consideration to the total
number of available methods (locally defined plus inherited)
for all classes.

ATTRIBUTE INHERITANCE FACTOR (AIF)
AIF is defined as the ratio of the sum of inherited attributes in
all classes of the system under onsideration to the total num-
ber of available attributes (locally defined plus inherited) for
all classes.

POLYMORPHISM FACTOR (PF)
PF is defined as the ratio of the actual number of possible dif-
ferent polymorphic situation for class Ci to the maximum
number of possible distinct polymorphic situations for class

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Ci.

COUPLING FACTOR (CF)
CF is defined as the ratio of the maximum possible number of
couplings in the system to the actual number of couplings not
imputable to inheritance.

4 SOME TRADITIONAL METRICS
There are many metrics that are applied to traditional func-
tional development. The SATC (Software Assurance Technol-
ogy Center at NASA Goddard Space Flight Center) from expe-
rience has identified three of these metrics that are applicable
to object oriented development: Complexity, Size, and Reada-
bility. To measure the complexity, the cyclomatic complexity
is used.

METRIC 1: CYCLOMATIC COMPLEXITY (CC)
Cyclomatic complexity (McCabe) is used to evaluate the com-
plexity of an algorithm in a method. It is a count of the num-
ber of test cases that are needed to test the method compre-
hensively. The formula for calculating the cyclomatic complex-
ity is the number of edges minus the number of nodes plus 2.
For a sequence where there is only one path, no choices or
option, only one test case is needed. An IF loop however, has
two choices, if the condition is true, one path is tested; if the
condition is false, an lternative path is tested [4].

Figure 1 shows a method with a low cyclomatic complexity is
generally better. This may imply decreased testing and in-
creased understandability or that decisions are deferred
through message passing, not that the method is not complex.
Cyclomatic complexity cannot be used to measure the com-
plexity of a class because of inheritance, but the cyclomatic
complexity of individual methods can be combined with other
measures to evaluate the complexity of the class. Although
this metric is specifically applicable to the evaluation of Com-
plexity, it also is related to all of the other attributes

Figure 1: Cylomatic Complexity

Number of Indepenenet Test path → edges – nodes + 2

Example of calculations for the cyclomatic complexity for four
basic programming structures

METRIC 2: SIZE
Size of a class is used to evaluate the ease of understanding of

code by developers and maintainers. Size can be measured in
a variety of ways. These include counting all physical lines of
code, the number of statements, the number of blank lines,
and the number of comment lines. Lines of Code(LOC) counts
all lines. Non-comment Non-blank (NCNB) is sometimes re-
ferred to as Source Lines of Code and counts all lines that are
not comments and not blanks. Executable Statements (EXEC)
is a count of executable statements regardless of number of
physical lines of code. For example, in FORTRAN and IF
statement may be written:

IF X=3 THEN Y=0

This example would be 3 LOC, 3 NCNB, and 1 EXEC.

Executable statements is the measure least influenced by pro-
grammer or language style. Therefore, since NASA programs
are frequently written using multiple languages, the SATC
uses executable statements to evaluate project size [5]. Thresh-
olds for evaluating the meaning of size measures vary de-
pending on the coding language used and the complexity of
the method. However, since size affects ease of understanding
by the developers and maintainers, classes and methods of
large size will always pose a higher risk.

METRIC 3: COMMENT PERCENTAGE
The line counts done to compute the Size metric can be ex-
panded to include a count of the number of comments, both
on-line (with code) and stand-alone. The comment percentage
is calculated by the total number of comments divided by the
total lines of code less the number of blank lines. Since com-
ments assist developers and maintainers, higher comment
percentages increase understandability and maintainability.

5 COMPLEXITY METRICS AND MODELS
5.1 HALSTEAD'S SOFTWARE SCIENCE
The Software Science developed by M.H.Halstead principally
attempts to estimate the programming effort. The measurable
and countable properties are:
 n1 = number of unique or distinct operators appearing in

that implementation
 n2 = number of unique or distinct operands appearing in

that implementation
 N1 = total usage of all of the operators appearing in that

implementation
 N2 = total usage of all of the operands appearing in that

implementation

From these metrics Halstead defines:

I. the vocabulary n as n = n1 + n2
II. the implementation length N as N = N1 + N2

Operators can be "+" and "*" but also an index "[...]" or a state-
ment separation "..;..". The number of operands consists of the
numbers of literal expressions, constants and variables.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

5.2 LENGTH EQUATION
It may be necessary to know about the relationship between
length N and vocabulary n.

LENGTH EQUATION
is as follows. " ' " on N means it is calculated rather than counted :
N ' = n1log2n1 + n2log2n2

It is experimentally observed that N ' gives a rather close
agreement to program length.

5.3 QUANTIFICATION OF INTELLEGENCE CONTENT
The same algorithm needs more consideration in a low level
programming language. It is easier to program in Pascal rather
than in assembly. The intelligence Content determines how
much is said in a program [10].

In order to find Quantification of Intelligence Content we need
some other metrics and formulas:

Program Volume: This metric is for the size of any implemen-
tation of any algorithm.
V = Nlog2n

Program Level: It is the relationship between Program Volume
and Potential Volume. Only the most clearalgorithm can have
a level of unity.
L = V* / V

Program Level Equation: is an approximation of the equation
of the Program Level. It is used when the value of Potential
Volume is not known because it is possible to measure it from
an implementation directly [9].
L ' = n*1n2 / n1N2

INTELLIGENCE CONTENT
I = L ' x V = (2n2 / n1N2) x (N1 + N2)log2(n1 + n2)
In this equation all terms on the right-hand side are directly
measurable from any expression of an algorithm. The intelli-
gence content is correlated highly with the potential volume.
Consequently, because potential volume is independent of the
language, the intelligence content should also be independent.

5.4 PROGRAMMING EFFORT
The programming effort is restricted to the mental activity
required to convert an existing algorithm to an actual imple-
mentation in a programming language.
In order to find Programming effort we need some metrics
and formulas:
Potential Volume: is a metric for denoting the corresponding
parameters in an algorithm's shortest possible form. Neither
operators nor operands can require repetition.
V ' = (n*1 + n*2) log2 (n*1 + n*2)
EFFORT EQUATION
The total number of elementary mental discriminations is:

E = V / L = V2 / V’

If we express it: The implementation of any algorithm consists
of N selections (nonrandom > of a vocabulary n. a program is
generated by making as many mental comparisons as the pro-
gram volume equation determines, because the program vol-
ume V is a measure of it. Another aspect that influences the
effort equation is the program difficulty. Each mental compar-
ison consists of a number of elementary mental discrimina-
tions. This number is a measure for the program difficulty
[6,7].

TIME EQUATION
A concept concerning the processing rate of the human brain,
developed by the psychologist John Stroud, can be used.
Stroud defined a moment as the time required by the human
brain to perform the most elementary discrimination. The
Stroud number S is then Stroud's moments per second with 5
<= S <= 20.
Thus we can derive the time equation where, except for the
Stroud number S, all of the parameters on the right are directly
measurable:

T ' = (n1N2(n1log2n1 + n2log2n2) log2n) / 2n2S

5.5 MCCABE’S CYCLOMATIC NUMBER
A measure of the complexity of a program was developed by
McCabe. He developed a system which he called the cy-
clomatic complexity of a program. This system measures the
number of independent paths in a program, thereby placing a
numerical value on the complexity. In practice it is a count of
the number of test conditions in a program.

The cyclomatic complexity (CC) of a graph (G) may be com-
puted according to the following formula:
CC(G) = Number (edges) - Number (nodes) + 1

The results of multiple experiments (G.A. Miller) suggest that
modules approach zero defects when
McCabe's Cyclomatic Complexity is within 7 ± 2.

A study of PASCAL and FORTRAN programs (Lind and
Vairavan 1989) found that a Cyclomatic Complexity between
10 and 15 minimized the number of module changes [11].

5.6 FAN-IN FAN-OUT COMPLEXITY - HENRY'S AND KA-
FURA'S
Henry and Kafura (1981) identified a form of the fan in - fan
out complexity which maintains a count of the number of data
flows from a component plus the number of global data struc-
tures that the program updates. The data flow count includes
updated procedure parameters and procedures called from
within a module.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 6
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Complexity = Length x (Fan-in x Fan-out)2

Length is any measure of length such as lines of code or alter-
natively McCabe's cyclomatic complexity is sometimes substi-
tuted.

Henry and Kafura validated their metric using the UNIX sys-
tem and suggested that the measured complexity of a compo-
nent allowed potentially faulty system components to be iden-
tified. They found that high values of this metric were often
measured in components where there had historically been a
high number of problems [8].

6 FUTURE WORKS
We have defined a metric for software model complexity
which is a combination of some of the metrics mentioned
above with a new approach. With this metric we can measure
software’s overall complexity (including all its components
and classes). Further, sufficient experimental results may be
used for new findings. Also there are metrics for measuring
software’s run-time properties and would be worth studying
more. These can be used for process improvement which is a
continuous process.

7 CONCLUSION
This paper highlight on the basic metric suite for object-
oriented design. The needs for such metrics are important
while an organization is adopting a new technology for which
established practices have ye to be developed. The metric suite
is not adoptable as such and according to some other re-
searches it isstill premature to begin applying such metrics
while there remains uncertainty about the precise definitions
of many of the quantities to be observed and their impact up-
on subsequent indirect metrics. For example the usefulness of
the proposed metrics, and others, would be greatly enhanced
if clearer guidance concerning their application to specific lan-
guages were to be provided.

It is economical and can lead to a significant reduction in costs
of the overall implementation and improvements in quality of
the final product. This improves quality and reduces mainte-
nance costs and efforts. Using early quality indicators based
on objective empirical evidence is therefore a realistic objec-
tive. It could be a pleasant challenge to improve own design
practices based on measurable data.

It is unlikely that universally valid object-oriented quality
measures and models could be devised, so that they would
suit for all languages in all development environments and for
different kind of application domains. Therefore measures and
models should be investigated and validated locally in each
studied environment. It should be also kept in mind that met-
rics are only guidelines and not rules. They are guidelines that

give an indication of the progress that a project has made and
the quality of design.

ACKNOWLEDGEMENT
The authors would like to acknowledge Seyyed Mohsen Ja-
malai, Department of Computer Engineering, Sharif Universi-
ty of Technology, Tehran, Iran, for his contribution in the field
of Software Engineering.

REFERENCES:
[1] Shyam R. Chidamber, Chris F. Kemerer, A METRICS SUITE FOR OB-

JECT ORIENTED DESIGN, 1993
[2] Carnegie Mellon School of Computer Science, Object-Oriented Testing

& Technical Metrics, PowerPoint Presentation , 2010
[3] Sencer Sultanoðlu, Ümit Karakaþ, Object Oriented Metrics, Web Doc-

ument, 2008
[4] Linda H. Rosenberg, Applying and Interpreting Object Oriented Met-

rics

[5] Sencer Sultanoðlu, Ümit Karakaþ, Complexity Metrics and Models,

Web Document, 1998
[6] Jaana Lindroos, Code and Design Metrics for Object-Oriented Sys-

tems, 2006
[7] Ralf Reißing, Towards a Model for Object-Oriented Design Measure-

ment
[8] Magiel Bruntink, Testability of Object-Oriented Systems: a Metrics-

based Approach, 2005
[9] Aine Mitchell, James F. Power, Toward a definition of run-time object-

oriented metrics, 2003
[10] Sencer Sultanoðlu, Ümit Karakaþ, Software Size Estimating, Web

Document, 1998
[11] David N. Card, Khaled El Emam, Betsy Scalzo, Measurement of Ob-

ject-Oriented Software Development Projects, 2004

